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Abstract

Recent advancements in 3D object detection and novel category detection have
made significant progress, yet research on learning generalized 3D objectness
remains insufficient. In this paper, we delve into learning open-world 3D objectness,
which focuses on detecting all objects in a 3D scene, including novel objects unseen
during training. Traditional closed-set 3D detectors struggle to generalize to open-
world scenarios, while directly incorporating 3D open-vocabulary models for open-
world ability struggles with vocabulary expansion and semantic overlap. To achieve
generalized 3D object discovery, we propose OP3Det, a class-agnostic Open-
World Prompt-free 3D Detector to detect any objects within 3D scenes without
relying on hand-crafted text prompts. We introduce the strong generalization
and zero-shot capabilities of 2D foundation models, utilizing both 2D semantic
priors and 3D geometric priors for class-agnostic proposals to broaden 3D object
discovery. Then, by integrating complementary information from point cloud
and RGB image in the cross-modal mixture of experts, OP3Det dynamically
routes uni-modal and multi-modal features to learn generalized 3D objectness.
Extensive experiments demonstrate the extraordinary performance of OP3Det,
which significantly surpasses existing open-world 3D detectors by up to 16.0% in
AR and achieves a 13.5% improvement compared to closed-world 3D detectors.

1 Introduction

In 3D perception systems, especially in real-world environments such as autonomous driving and
robotics, object categories of interest may change dynamically. This has led to increasing attention on
challenging tasks like out-of-distribution 3D detection [1, 2], open-world 3D detection [3, 4] and open-
vocabulary 3D detection [5, 6, 7, 8, 9, 10], improving generalization beyond closed-set assumptions.
A core challenge across these tasks is the ability to localize all objects, which lies in understanding
how objects are structured in 3D scenes to distinguish them from the background. While extensive
efforts have been made to identify unknown or novel objects in the 2D domain [11, 12, 13] - known
as class-agnostic object detection (OD) [14], such exploration in the 3D domain remains limited. To
bridge this gap, we introduce learning 3D objectness in a class-agnostic paradigm, enabling models to
detect and discover objects beyond known categories. Therefore, our goal is to achieve class-agnostic
3D object detection, where objects are identified and localized based on their intrinsic properties
rather than pre-defined semantic labels, thus supporting open-world perception.

In a class-agnostic manner, ensuring a high recall rate is essential, as it ensures that the majority of
objects in the scene are detected regardless of their semantic categories. This serves as a foundation
for accurate category assignment and significantly contributes to object detection for categories
of interest [7, 15]. Although current point-cloud-based 3D detectors [16, 17, 18, 19, 20] have
achieved significant success in 3D benchmark datasets [21, 22, 23, 24], simply shifting from class-
specific to class-agnostic classification is ineffective. This is primarily because 3D point cloud
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Figure 1: Illustration for Prompt-free 3D objectness learning. (a) Closed-world detectors can only
recognize pre-defined categories in the training dataset (yellow boxes). Although some 3D detectors
can detect novel classes via pre-defined prompts (green boxes), they still cannot detect “all" when the
given vocabularies are limited. (b) In comparison, our OP3Det can detect rare categories (red boxes)
and better discover 3D objects without the requirement of any semantic labels and text prompts.

data are extremely limited in both the scale of data and annotated categories. Moreover, directly
employing open-vocabulary 3D models for class-agnostic detection faces significant challenges
due to vocabulary expansion and semantic overlap [25] in hand-crafted text prompts, making them
ineffective for novel object discovery and preventing the learning of open-world 3D objectness, as
can be seen in Fig 1. Therefore, learning 3D open-world objectness and achieving strong localization
generalization is highly challenging. In contrast, the 2D domain is far more resource-rich in both
models and data. Plenty of pre-trained foundation models [26, 27] and the detectors trained on
extensive vocabularies [28, 29, 30] with broad classes [31, 32, 33] demonstrate strong generalization
capability. Our intuition is to transfer strong zero-shot abilities from 2D pre-trained models to the 3D
domain, exploring its generalization ability for 3D object discovery and 3D objectness learning.

We propose OP3Det, a class-agnostic Open-World Prompt-free 3D Detector, which exploits extensive
2D semantic knowledge to learn open-world 3D objectness. Here, prompt-free means that our
method requires no text prompts or any semantic priors as inputs at inference time, making it
semantic prompt-free—the model directly learns 3D objectness from geometric and visual cues.
More specifically, we primarily use the large 2D foundation model - Segment Anything Model
(SAM) [27], to extract abundant and generalizable class-agnostic object masks in a scene. However,
SAM often produces fragmented masks or partial object masks, which will severely hinder the
learning of whole objectness [34, 35]. To address this, we adopt a multi-scale point sampling strategy
that considers 3D spatial proximities to refine the uniformly distributed point prompts provided to
SAM, enabling more accurate extraction of class-agnostic object bounding boxes. Through semantic
and geometric cues, a greater variety of novel objects can be discovered effectively, which are
subsequently projected into the 3D space for 3D object discovery in point clouds prior to training.

To better learn 3D objectness during the training phase, we further leverage 2D semantic knowledge
and integrate both point cloud and RGB image modalities for multi-modal training. Prior works
have explored fusion at various levels, including point-level [36, 37], feature-level [38, 39, 40], and
object-level [41, 42, 43, 44]. Although these methods have shown strong performance, they often
rely heavily on fused features, while overlooking the importance of preserving modality-specific
informative cues. We thus propose the cross-modal mixture of experts (MoE) to effectively connect
both intra-modal and inter-modal information. Specifically, we use the self-attention structure
to encode uni-modal and multi-modal features. Through a multi-modal router and modal-specific
experts, OP3Det dynamically fuses uni-modal or multi-modal features, ensuring that the most relevant
information can be adopted. The model can adapt its strategy according to the specific demands of
each scenario, whether it requires a stronger reliance on 2D semantic information from images, 3D
geometric cues from point clouds, or a balanced integration of both modalities.

Our main contributions can be summarized as follows:

* We introduce a novel and practical problem setting, class-agnostic open-world 3D object detection,
which aims to detect all objects in a 3D scene and reflect real open-world environments. To the best
of our knowledge, we are the first to formally define and address this problem in the 3D domain.

* We propose OP3Det, a multi-modal 3D detector for learning open-world 3D objectness. A multi-
scale point sampling strategy is designed to enhance 2D-3D association and reveal a broader range
of object instances for effective open-world 3D object discovery.
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Figure 2: The overview of OP3Det. We apply SAM to introduce abundant 2D semantic knowledge
for 3D object discovery. Multi-scale point sampling is utilized in this process. The cross-modal MoE
is then employed to guide data pathways for uni-modal and multi-modal features, allowing the model
to dynamically adapt its reliance on unimodal or cross-modal information according to the scenario.

* We design a cross-modal mixture-of-experts (MoE) module guided by a multi-modal router,
which dynamically selects between uni-modal and multi-modal pathways to adaptively learn 3D
objectness under diverse open-world scenarios.

Extensive experiments demonstrate the ability of our OP3Det to detect in the open world. OP3Det
possesses a strong generalization ability in both cross-category and cross-dataset settings. It achieves
27% improvement for novel class discovery compared to the baseline method. The adaptability of our
method also makes it easily extendable to outdoor scenes, class-specific detection or the 2D domain.

2 Related Work

Open-world 3D scene understanding. Open-world 3D learning aims to identify and detect 3D
objects from an arbitrary set of categories, allowing models to generalize to novel object categories
that are not present in the training data. Recent methods [45, 46, 47, 48, 49, 50] have conducted
open-world learning for 3D segmentation. However, these methods rely on precise mask-level
annotations for geometric information learning. Open-vocabulary 3D detectors [5, 6, 7, 8, 9, 10]
usually use RGB images and pre-trained 2D models [26, 27] to enrich semantic information for
recognizing novel categories. Despite their success, these methods rely on a pre-defined vocabulary
as input for detection, rather than truly learning objectness. When the vocabulary is incomplete
or mismatched with the scene, they still fail to detect all objects, resulting in a low recall in novel
classes. In comparison, we formally explore open-world 3D objectness learning in a class-agnostic
way, aiming to detect all salient objects in a scene without relying on a fixed label set or text prompts.

Applications of SAM in 3D scenes. The strong zero-shot generalization capabilities of SAM have
motivated its adoption in 3D scenes. Previous works leverage SAM to generate fine-grained 3D masks
for 3D segmentation. SAM3D [46] and Segment3D [51] both used a bottom-up framework that
applied SAM to RGB-D images to obtain 2D masks, which are then projected into 3D space for su-
pervised training. In contrast, methods such as REAL [52], SAM-Graph [53] and OpenMask3D [54]
adopt a top-down strategy. They utilize projected 3D labels as prompts to guide SAM in generating
more accurate 2D masks, which are subsequently back-projected to produce dense or diverse 3D
annotations. However, the segments from SAM are not solely focused on objects. Directly using
SAM will introduce noise into the generated 3D labels. Our method apply SAM for 3D object
detection in open-world learning. By eliminating the need for 2D text and 3D labels as prompts, we
enable scalable training and generalization to unseen objects in an open world.

2D and 3D Feature Fusion. Existing multi-modal fusion methods can be generally divided into
point-level, feature-level and object-level categories. Point-level fusion introduces 2D features
directly in the 3D domain. PointPainting [36] and PointAugmenting [37] enhance LiDAR-based
3D object detection by enriching point cloud features with image semantics. Feature-level fusion
integrates multi-modal features using shared representation spaces or attention-based modules, like
BEVFusion [38, 39] projecting LIDAR and image features into the BEV space. Object-level fusion
integrates modality-specific information at the instance level. SparseFusion [41] fuses instance-level
sparse features from both 2D and 3D inputs, and ObjectFusion [42] uses a heatmap-based proposal



generator to align object-centric features. However, these methods often rely heavily on fused features,
while overlooking the need to preserve modality-specific critical cues. OP3Det adaptively filters
irrelevant cross-modal features while preserving and enhancing informative intra-modal signals.

3 Method

We formulate the class-agnostic open-world 3D object detection task in Sec. 3.1. Fig. 2 shows the
overall architecture of the proposed OP3Det. To achieve open-world and class-agnostic 3D detection,
OP3Det learns 3D objectness through two key components: (i) a 3D Object Discovery strategy
(Sec. 3.2) that expands the set of potential 3D objects and (ii) a cross-modal MoE module (Sec. 3.3)
that dynamically fuses semantic and geometric representations for robust 3D objectness learning.

3.1 Problem Formulation

In our work, 3D objectness denotes the likelihood that a spatial region corresponds to a physically
discrete object, distinguishable from background structures or noise, regardless of semantic category.
Formally, let ¢(-) denote a learnable model that maps input features Fiypue to an objectness confidence
score. The 3D objectness learning can be expressed as: I [¢(Finpyt) > 7| where 7 is a confidence
threshold for classifying a spatial region as foreground, and I[-] is the indicator function (1 denotes a
valid object region and 0 denotes background). The model ¢ is trained to approximate this decision
function, assigning high confidence to true object regions and low confidence to background or noise.

Given a point cloud X p and corresponding RGB images X7, the training data contain annotated 3D
bounding boxes {(c;, bb3P)}M,, where ¢; and bb?P are the objectness label and 3D bounding box of
the i-th object, M is the number of 3D boxes. Our goal is to leverage the paired multi-modal input
(Xp, X7) as input features Fi,,—together with the bb?D —to learn a detector capable of discovering

and localizing all object instances during inference, including novel and unseen categories.

For multi-modal training, the 3D point cloud features Fp € RE*X>*YXZ and 2D image features Fy €
REXHXW are extracted through the voxel-based backbone and the image backbone separately. F7 is
then projected into the 3D voxel space for the image features in the voxel space Fy € RE*X>xYxZ,
Denote the camera intrinsic matrix as /' and the extrinsic matrix as R;, then the corresponding
positions in the 2D image can be obtained by projecting 3D positions in the 3D voxel space through
K R;. We concatenate these two features to obtain the multi-modal features: F; = [Fp, F}]. For
multi-modal fusion, we propose the cross-modal MoE to fuse Fp, Fj, Fyy, in order to integrate 2D
semantic, 3D geometric, and multi-modal information in the training phase.

3.2 3D Object Discovery

3D object discovery enables the discovery of novel objects prior to training. To achieve this, we
leverage cross-priors from both the 2D and 3D space. In terms of the 2D domain, we utilize
the Segment Anything Model (SAM) [27], which is trained on extensive 2D datasets and thus
demonstrates strong zero-shot generalization performance across various scenarios. We apply SAM
directly on RGB images X; to conduct segment-anything inference, obtaining a series of class-
agnostic masks. Due to the rich semantic information from SAM, these masks often cover a broader
range of objects, thus significantly addressing the limitations of object information in 3D datasets. The
segment-anything inference process employs a regular 64x64 grid of points {(x, y)} as non-semantic
point prompts, which serve as inputs to SAM to obtain segmentation results.

However, SAM, as a segmentation model, often leads to fragmented outputs or object parts and
sub-parts in the final mask outputs. As illustrated in Fig. 3a, this produces a large number of chaotic
masks, introducing significant noise into the final annotations. This severely impedes class-agnostic
detection, which generally targets entire objects at a global level. To address this issue, we propose a
multi-scale sampling strategy, guided by per-point object prior probabilities. We begin by selecting
a source point (z,ys) from the point set that is most likely to be related to the object, according
to the IoU score from SAM and attention values from self-supervised model as 2D object priors.
Then we filter neighboring points whose 3D distances to the selected point are within a threshold 4,
ensuring that local geometric consistency is preserved—a property that cannot be reliably derived
from 2D image alone. Specifically, to obtain the 3D distance between the point (z, y) and the source
point (zs,ys), we project all 3D points onto the 2D image plane through K R;. Then, we select



(a) SAM result (b) Point sampling, (c) Point sampling,  (d) Multi-scale sampling +
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Figure 3: Visualization of point sampling trategy. The segmentation masks from SAM contain
many small fragments and object parts. By using multi-scale point sampling, these noisy masks can
be mitigated. Post-processing with a 2D class-agnostic detector further improves the quality.

the 3D points (2,3, 2) and (x, 9., z.) whose projected points are closest to (z,y) and (xs, ys)
respectively. The 3D distance between (x,y) and (z4,ys) is actually the 3D distance between
(2',y,2") and («f, y., 2.). The iteration continues until no further points are selected. In this way,
points that are too close to each other and with low object prior values are filtered out, enabling the
elimination of many overly small object masks or object parts, thus reducing noise, which can be
seen in Fig. 3b and Fig. 3c.

The choice of § is a crucial parameter, as it affects the scale of the final masks. When ¢ is too small,
filtering of object parts may be insufficient, while a large § may lead to the exclusion of useful
objects. To address this, we use a series of § values ranging from small to large, (0.2,0.5,1,2) in our
experiments specifically, and combine their results through NMS. Such a multi-scale point sampling
strategy captures the advantages of different scales, yielding more reliable segmentation results.

Finally, to further filter out the remaining small noise masks, such as tiny fragments left when 9 is
small, and to enhance object localization, we pass the segmentation results through a pre-trained
class-agnostic 2D detector [55]. Since this 2D detector is trained in a class-agnostic way, it focuses
on the localization information and is sensitive to complete object boundaries. Thus, it can effectively
help determine whether each mask represents a whole object. The object masks and bounding boxes
will also be adjusted according to the bounding box regression of such a 2D detector. For objectness
prediction, we multiply the IoU prediction scores from SAM and the objectness scores from the
class-agnostic 2D detector to obtain the updated scores. We then filter low-score object masks based
on such updated scores to ultimately reduce noisy masks, as is illustrated in Fig. 3d. These 2D boxes
are ultimately projected into the 3D space through K R; for 3D object discovery. !

3.3 Cross-Modal MoE

In the previous subsection, we primarily focus on 3D object discovery in point clouds prior to training.
Further, during the training process, we continue to exploit semantic knowledge, integrating geometric
information from 3D point clouds to facilitate 3D objectness learning. Therefore, we employ the
multi-modal training approach, using both point clouds and RGB images for 3D object detection.

In the closed-world setting, directly using multi-modal features F; for detection can already lead
to performance gains [56, 38]. However, this does not work in the open-world setting. This is
because in the class-agnostic binary classification mode, recognizing different objects also heavily
relies on geometric information, which is widely present in point cloud features F'p. Furthermore,
certain multi-modal scenes may be dominated by a single modality, leading to incomplete spatial
understanding under occlusions or restricted viewpoints, making it essential to incorporate effective
intra-modal interactions to fully exploit the strengths of each individual modality. To address this, we
propose a cross-modal Mixture-of-Experts (MoE) module that selectively guide the data pathways of
2D semantic features, 3D geometric features, and multi-modal fused features, achieving dynamic
multi-modal fusion to boost 3D objectness learning.

We first utilize the self-attention [57] module on uni-modal and multi-modal features, respectively,
on its spatial dimensions. This enables the detector to concentrate on the important spatial regions in

!The operation is that we project 3D points into the 2D space using K Ry, finding points within the 2D box,
then clustering them to obtain the 3D box ({bi)igD) N ). This can be viewed as 2D—3D projection.



the features for the subsequent 3D detection, thus extracting important features for each modality:
Fp = SelfAttn(Fp), and F;, Fps are defined and obtained in the same way.

Then, we utilize the multi-modal router to obtain the routing probability pp, pr, pas for different
modality features, guiding the data pathways for each modality. This router consists of a 3D
convolution layer, a global average pooling layer, a fully connected layer, and the final softmax.
Denote the router as R, this process can be denoted as:

(p,p1,PM) = R(Fur) (D

Guided by these routing probabilities, we finally apply a semantic expert £;, geometric expert Ep,
and a fused expert £,;. We implement experts through three 3D convolution layers with kernel sizes
of 1, 3 and 1 sequentially. The specific process is as follows:

F= Y pi-&F) 2)

ie(P,I,M)

Finally, F is fed into the detection head, where we adopt the 3D detection transformer [58, 15]. As
F represents a synthesis of Fip, F; and F), the model can dynamically adjust the data pathways
based on the input data for dynamic multi-modal fusion, ensuring that the most suitable features can
be utilized for the final detection. This thus enhances multi-modal class-agnostic detection.

3.4 Training and Inference

Training. We use RGB images and point clouds pairs to guide the training of our class-agnostic 3D
network. For each image, 3D object discovery is performed using the SAM [27], selected for its
large-scale open-world training, remarkable zero-shot generalization to unseen objects, and class-
agnostic design. With both annotated and discovered 3D bounding boxes enriched by corresponding
RGB images, we then employ the Cross-Modal MoE to train a multimodal 3D detector capable
of learning class-agnostic objectness across modalities. Ultimately, the learning loss function of
OP3Det primarily follows the loss function in [9]. To better suit our task, the classification loss is
formulated as a class-agnostic binary classification loss. For 3D scenes with multi-view images, we
extract features from each view and project them into the voxel space using their respective projection
matrices. The projected features are then aggregated to the multi-modal representation.

Inference. During training, our model utilizes 2D images to discover potential objects and provide
semantic supervision for 3D objectness learning. During inference, it performs detection directly
on point cloud—image pairs, requiring no additional stages or external modules beyond a standard
multi-modal 3D detector. The learned cross-modal MoE further enables class-agnostic 3D objectness
inference in a fully prompt-free manner.

4 Experiments

Datasets. For indoor scenes, we utilize SUN RGB-D [21] and ScanNet V2 [22] datasets. SUN
RGB-D contains 46 classes, while ScanNet V2 contains 200 categories in total [59]. We mainly
follow the setting of [7] for category splitting. Specifically, for SUN RGB-D, the categories with the
top 10 most training samples are selected as base (seen) categories, while the remaining 36 are novel
classes. For ScanNet, we also adopt the same setting, using single-view small scenes corresponding
to individual images for training. The top 10 classes are utilized for base classes and the other 50 ones
for novel classes. Their category labels are removed during training for class-agnostic classification.
For outdoor 3D detection, we mainly conduct experiments on the KITTI [23] dataset. We treat the
car class as the base class and the cyclist and pedestrian classes as novel classes. We mainly utilize
its official metric, the APy metric with 40 recall positions for evaluation.

Since the target is to identify all objects within a scene for 3D objectness learning and 3D object
discovery, and not all bounding boxes are necessarily annotated in the test set, we mainly employ
Average Recall (AR) under IoU thresholds of 0.25. Average precision (AP) is also utilized. However,
under class-agnostic binary classification, AP for base and novel classes cannot be straightforwardly
computed, so we only report AP across all categories. For more discussions and experimental results
about the AP metric, please refer to the Appendix C.



Table 1: The cross-category performance of OP3Det on the SUN RGB-D and ScanNet dataset.
Closed-world 3D detection methods are trained on 3D point clouds with only seen categories
annotated. Open-vocabulary methods are trained on 3D point clouds with class-specific 3D bounding
boxes for annotations, thus requiring more information compared to our class-agnostic setting.

SUN RGB-D ScanNet

Method ARn(mel ARall ARbase APall ARnovel ARall ARbase APall
closed-world 3D object detection methods
VoteNet [16] 33.7 68.3 79.1 55.1 353 44.6 56.1 13.8
GroupFree [60] 41.8 69.9 78.7 49.2 32.1 40.9 51.8 9.4
FCAF3D [17] 65.3 86.5 92.7 62.0 61.7 71.3 83.2 24.7
Uni3DETR [15] 51.8 82.1 91.6 61.3 54.6 67.6 80.1 16.9
Tr3D [56] 62.1 84.8 91.9 534 47.1 58.1 71.6 17.2

open-vocabulary 3D object detection methods
Det-PointCLIPv2 [8] 22.4 31.1 64.5 10.2 33.1 38.7 559 3.1

3D-CLIP [26] 23.6 323 66.8 25.7 329 36.2 55.5 5.6

CoDA [7] 339 60.2 71.5 48.2 443 53.4 68.3 239

OV-Uni3DETR [9] 62.8 82.5 88.8 57.4 67.6 71.6 76.5 259

ImOV3D [61] 46.9 63.1 74.1 28.3 56.9 70.6 77.9 25.0
class-agnostic open-world 3D object detection method

OP3Det (ours) [ 78.8 89.7 93.1 654 | 799 83.2 87.3 28.6

Implementation Details. We implement with mmdetection3D [62], and train with the AdamW [63]
optimizer. We use ResNet50 [64] and FPN [65] for the image feature extractor, and sparse 3D ResNet
for the voxel feature extractor. We use the multi-scale of § = (0.2,0.5,1,2). Nppne is set to the half
number of the total points. We utilize the 0.6 threshold to filter low-quality discovered 3D objects.

Baselines. Since class-agnostic 3D detection in the open world has not yet been explored, we compare
OP3Det with methods from the related fields of closed-world 3D detection (i.e. traditional fully-
supervised 3D detection) [66, 60, 17, 15, 56] and open-vocabulary 3D detection [7, 9], and adapt
baselines accordingly. For closed-world 3D detection methods, we convert all seen categories into a
single class label during training so that these SOTA supervised methods only classify the bounding
boxes are objects are not. For open-vocabulary methods, we similarly construct a class-agnostic
training setting by replacing all class-specific text prompts with "object". This ensures the model
learns to detect general objects without relying on specific category semantics.

4.1 Cross-Category Generalization

As is shown in Tab. 1, OP3Det demonstrates significant improvements over existing methods. For
novel class discovery, AR,y increases by 13.5% compared to the state-of-the-art closed-world
3D detector FCAF3D, and by 16% compared to the open-vocabulary 3D detector OV-Uni3DETR.
Furthermore, our model also shows improvements on base classes, without any decline. This thus
contributes to an overall increase in AR across all classes. It is worth mentioning that since novel
class objects only represent a small proportion of the scenes, their impact on the overall AR and AP
is relatively limited. Nevertheless, even under these conditions, our method still achieves an average
increase of over 3% in AR,;; and AP, strongly demonstrating the 3D object discovery capability
of our method. Such substantial improvement highlights that 3D objectness learning addresses a
challenging issue about the ambiguous nature of class-agnostic 3D object detection tasks that remains
unsolved by existing 3D models, underlining the importance and necessity of our new intuition.

On the larger-scale ScanNet dataset, where the number of categories is higher, our OP3Det continues
to demonstrate strong performance, with a clear advantage over existing methods, achieving a 12.3%
improvement in AR,,,,¢;. This further validates the capability of our model in the large-vocabulary
setting. Notably, under these conditions, the performance gap between base and novel classes is even
smaller, highlighting the strong cross-category generalization ability of OP3Det. Compared to the
traditional closed-world 3D detectors, our method benefits from leveraging 2D semantic knowledge
for 3D object discovery, effectively mitigating the limitations of category information in 3D point
clouds. In contrast to open-vocabulary 3D detectors, our use of class-agnostic classification aligns
more closely with the objectives of 3D objectness learning. Additionally, the cross-modal MoE
effectively integrates multi-modal information, allowing the most relevant features to be applied for
class-agnostic detection. The significance of the class-agnostic open-world 3D detection problem as
a valuable new direction can also be validated.



Table 2: The cross-dataset performance of OP3Det on the SUN RGB-D and ScanNet dataset
for class-agnostic open-world 3D object detection. We directly test the trained model on another
dataset to obtain the below cross-dataset results.

Method ScanNet — SUN RGB-D SUN RGB-D — ScanNet
ARys  ARs5o | APys  APs | ARy ARsg | APy APy
closed-world 3D object detection methods

VoteNet [16] 34.8 2.0 10.8 0.1 30.4 6.3 9.6 1.2

GroupFree3D [60] | 41.4 0.4 1.9 0.1 39.4 52 8.7 0.1

FCAF3D [17] 59.3 8.1 17.9 0.6 47.7 14.6 | 129 1.9

Uni3DETR [15] 51.3 6.4 11.9 0.2 45.7 109 | 11.3 1.3

Tr3D [56] 54.6 4.5 114 0.2 45.2 10.7 9.4 1.6

open-vocabulary 3D object detection methods

CoDA [7] 214 2.8 6.2 0.1 327 52 8.9 04

OV-Uni3DETR [9] | 49.5 32 8.1 0.3 52.0 154 9.5 0.8
class-agnostic open-world 3D object detection method

OP3Det (ours) [ 73.1 10.7 | 22.3 1.1 [ 779 373 | 21.2 5.1

Table 3: The performance of OP3Det on KITTI dataset for class-agnostic open-world 3D object
detection. The models are trained only on car and are evaluated on car, pedestrian and cyclist. We
report APz with 40 recall positions. *: AP3p on the moderate difficulty is the most important metric.

AP3p APppv
Method easy medium* hard | easy medium hard
closed-world 3D object detection methods
SECOND [69] 61.05 62.36 61.36 | 63.15 69.00 68.46
PointPillar [70] 59.54 62.13 60.04 | 63.04 68.87  66.75
Part-A? [71] 61.28 63.43 63.57 | 6293  69.04  69.88
3DSDD [72] 61.42 62.34 62.06 | 6293 6850  68.29
PV-RCNN [73] 59.88 65.18 65.67 | 63.01 69.36 7042
Uni3DETR [15] 63.54 65.74 65.43 | 62.74  69.01 69.87
open-vocabulary 3D object detection method
OV-Uni3DETR [9] [ 62.66 63.20 62.82 [ 6433 69.15  68.98
class-agnostic open-world 3D object detection method
OP3Det (ours) | 63.56 66.75 66.42 [ 65.13  71.37  70.34

4.2 Cross-Dataset Generalization

Moreover, since class-agnostic open-world 3D detection aims for robust performance in unseen or
unknown domains, we further validate the cross-domain detection capability through cross-dataset
experiments. In this case, point clouds in different datasets are generally collected through varying
methods or sensors. Specifically, SUN RGB-D provides point clouds directly captured by single-
view RGB-D cameras, whereas ScanNet reconstructs point clouds from multi-view RGB-D image
sequences. As a result, the two datasets exhibit substantial differences in the structure and content of
their point clouds, making cross-dataset evaluation in the 3D domain considerably more challenging.

To this end, we conduct cross-dataset experiments for both the SUN RGB-D — ScanNet and ScanNet
— SUN RGB-D settings. The results are presented in Tab. 2. Due to differences in category definitions
among datasets [67, 68], we only measure AR and AP across all objects. As can be seen, for many
existing 3D detectors, a significant performance drop appears in cross-dataset scenarios. For instance,
CoDA performance deteriorates noticeably. This is largely due to the reliance of some 3D detectors
on point-based backbones for feature extraction, making them highly dependent on dataset-specific
geometric information, which limits their effectiveness in cross-dataset generalization. Closed-world
3D detectors suffer from limited supervision due to restricted annotations, while open-vocabulary
3D detectors with class-specific classification are vulnerable to category definition conflicts. In
contrast, our method demonstrates substantial performance gains, achieving 30% ARs5 improvement
in the SUN RGB-D — ScanNet setting. The APy5 improvement is also almost 10%. Besides, the
cross-dataset performance also closely approaches in-dataset results, with only 2% lower ARo5. This
further confirms the strong cross-dataset generalization ability of our method and its effectiveness in
learning open-world 3D objectness. Through both cross-category and cross-dataset evaluation, the
strong 3D object detection capability of OP3Det in indoor scenes can be demonstrated.



Table 4: Comparison with 3D open-vocabulary methods on the SUN RGB-D and ScanNet
dataset for open-vocabulary 3D object detection (class-specific). The experimental setting is
totally the same as CoDA, and the utilized data are downloaded from CoDA officially released code.

Method SUN RGB-D ScanNet
APnovel APbase APall AP’rw'uel APbase APall
CoDA [7] 6.71 38.72  13.66 6.54 21.57 9.04
INHA [74] 8.91 42.17 16.18 7.79 25.1 10.68
CoDAV2 [75] 9.17 42,04 16.31 9.12 2335 11.49
OV-Uni3DETR [9] 12.96 49.25  20.85 15.21 31.86 17.99
GLRD [76] 12.96 4940  20.88 17.29 26.78  18.87
OP3Det (ours) 14.31 49.63 21.99 17.77 3212 20.16

4.3 Outdoor 3D Detection Generalization

We then evaluate OP3Det on the outdoor KITTI dataset, and list the comparative results in Tab. 3.
Unlike indoor point clouds, outdoor point clouds are usually collected by the LiDAR sensor. In
outdoor 3D scenes, foreground objects are usually small and sparse, with significantly fewer points.
Background points dominate the scene thus disturbing the detection process significantly. The gap
between outdoor LiDAR points and 2D images is thus larger than indoor ones, making leveraging 2D
semantic knowledge more challenging in outdoor scenes. Additionally, since the counts of pedestrian
and cyclist classes are considerably lower than that of cars, the detection AP for novel classes has only
a limited effect on the overall AP. Despite this, OP3Det still achieves the best performance. Notably,
on the medium difficulty level, the most important metric, APsp outperforms existing methods by
more than 1%, with consistent improvements also observed in APz gy . This largely underscores the
generalization of our approach across diverse point cloud scenes and highlights the adaptability of our
method. The universality of OP3Det for exploring 2D semantic knowledge is thus further validated.

4.4 Class-Specific 3D Detection Generalization

The ability of class-agnostic object detection to learn open-world objectness and thereby locate all
objects in 3D scenes makes it highly valuable for a wide range of downstream tasks. To further
demonstrate the strength of this capability, we extend OP3Det to class-specific 3D detection in this
section. Specifically, we replace the 2D class-agnostic model with a class-specific detector [30],
enabling the assignment of category labels during the 3D object discovery process. We follow
the experimental setup of CoDA [7] and compare our approach with open-vocabulary methods,
presenting the results in Tab. 4. As shown, under the class-specific setting, our method outperforms
OV-Uni3DETR by more than 2% in AP,,,¢;, and also surpasses the current state-of-the-art method,
GLRD. This further validates the strong capability and practical value of our approach.

Although OP3Det is designed in a class-agnostic setting, it still performs well on class-specific
detection tasks. This can be attributed to its strong 3D objectness learning, which provides high object
recall and precise localization. When coupled with a class-specific head, the model readily adapts to
semantic recognition, demonstrating that robust objectness understanding serves as a transferable
foundation for both class-agnostic and class-specific 3D detection.

4.5 Ablation Study

We conduct an ablation study to evaluate the effectiveness of the SAM, multi-scale point sampling
(PS), and cross-modal MoE (CM-MOoE). Such a study is listed in Tab. 5 and Tab. 6.

Table 5: Ablation Study on the SUN RGB-D dataset. SAM: utilizing SAM for object discovery.
PS: multi-scale point sampling in 3D novel object discovery. CM-MOoE: cross-modal MoE.

SAM PS CM-MoE | AR, ovei ARy ARpgse
54.2 84.0 92.3

v 50.0 74.1 81.6
v v 69.2 87.9 92.5
v v v 78.8 89.7 93.1




Table 6: Ablation Study on the SUN RGB-D dataset about the cross-modal MoE. PC and Img
indicate whether the point cloud or image modalities are used during training, and method denotes the
multi-modal fusion approach. Addition and Concat represent feature summation and concatenation,
respectively, while CM-MOoE refers to the proposed cross-modal Mixture of Experts.

PC Img method AR,over ARanr ARpgse
Ve - 69.2 87.9 92.5
v - 38.4 64.4 72.5
v v addition 65.4 85.6 91.4
v v concatenation 66.0 85.8 92.1
v v CM-MoE 78.8 89.7 93.1

e UL i

Figure 4: The visualized results of OP3Det on the SUN RGB-D (the first row) and ScanNet (the
second row) dataset. The red boxes are base classes and blue boxes are novel classes.

The core design of our method consists of two main components: 3D novel object discovery and a
cross-modal Mixture of Experts (MoE). For 3D object discovery, we first employ the robust SAM
model to identify potential objects. However, using SAM alone leads to suboptimal performance
on both novel and base categories, resulting in a 4.2% decrease in AR,,,,¢; and a 10.7% decrease
in ARpqse. This is primarily because SAM is not inherently object-centric and tends to produce
numerous fragmented or partial masks, introducing substantial noise that degrades overall detection
performance. After incorporating our multi-scale point sampling strategy and a class-agnostic
2D detector for post-processing, the 3D objectness learning is significantly enhanced — AR, ,y¢;
improves by 19.2% and ARpyse by 10.9%. These results demonstrate that our multi-scale point
sampling effectively suppresses noisy masks and leverages 2D semantic cues to accurately discover
3D objects. Additional results and analyses are provided in the Appendix D.

As can be seen in Tab. 6, both single-modal point cloud and RGB image modalities achieve commend-
able 3D objectness learning, validating the effectiveness of our strategy of using 3D spatial proximity
for 3D object discovery. However, naive fusion approaches such as summation or concatenation—as
commonly used in prior works—Ilead to degraded performance compared to the point-cloud-only
model. This stems from the open-world class-agnostic setting, where binary foreground-background
prediction can cause RGB features to interfere with critical 3D geometric cues if fusion is not prop-
erly guided. In contrast, our cross-modal MoE dynamically balances uni-modal and multi-modal
representations, allowing each modality to contribute adaptively. As a result, OP3Det improves AR,;;
by 1.8% and AR, 4,1 by 9.6%, effectively leveraging complementary 2D semantic and 3D geometric
information while preserving modality-specific knowledge for robust 3D objectness learning.

Visualization. We provide visualization in Fig. 4 to further validate the effectiveness of our OP3Det.

5 Conclusion

We introduce OP3Det, the first work to learn 3D objectness in a class-agnostic manner in an open-
world setting. We leverage multi-modal learning to bridge the gap between limited 3D annotations and
extensive 2D semantic knowledge. First, we utilize 2D and 3D object priors for 3D object discovery.
By integrating semantic knowledge and a cross-modal mixture of experts, OP3Det captures intra- and
inter-modal dependencies cohesively and demonstrates impressive generalization capability across a
diverse range of categories and scenes, especially unseen classes. Extensive experiments demonstrate
its discover-all ability. We believe OP3Det represents a significant step forward in enabling scalable,
real-world applications of 3D object detection in complex, open-world settings.
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Appendix
A Overview of 3D Open-World Learning Research

Table 7: The overview of existing detectors on their capability. For category, we discuss whether
the detector can recognize novel classes during inference ("closed" v.s. "open"), and "open (no cfs)"
denotes whether the category confusion problem exists in the large-vocabulary scene.

Task Scene (3D) Modality (3D) Category

Method Venue 2D 3D | indoor outdoor | PC Img closed open open (no cfs)
DETR [58] ECCV’20 - - - -
DINO [77] ICLR’23 - - - -
VALD [78] ICLR'22 . N N .
OV-DETR [79] ECCV’22 - - - -
Detic [28] ECCV’22 - - - -
ORE [80] CVPR’21 - - - -
LDET [55] ECCV’22 - - - -
UniDetector [29] CVPR’23
VoteNet [16] ICCV’19

FCAF3D [17] ECCV’22
NeRF-Det [81] ICCV’23
PointPillars [70] CVPR’19
CenterPoint [18] CVPR’21
BEVFormer [82] ECCV’22
ImVoteNet [66] CVPR’20
TR3D [56] ICIP’23
MetaBEV [83] ICCV’23
ImVoxelNet [84] WACV’22
Cude RCNN [85] CVPR’23
Uni3DETR [15] NeurIPS’23
OV-3DET [86] CVPR’23
CoDA [7] NeurIPS’23
OV-Uni3DETR [9] ECCV’24
* OP3Det (ours)

L R N R R R R N AN SN R NI RN
NISSKSKNSSKNANSNKNANNNS SN ™% XXX XXX
AN NANANE N N NE NN NA S N VAN NN N N N N N NN
SRR 3 % 33 X 3 X X 3¢ X X %[N NN NN X X
3¢ 3 3|3 3 3| 3 3 3| 3 X 3 X X XN N N X X Xx[> X

NSNS NIXXNSNUXSNNxNY!
NS> XX NSNS NN X XN XX

NISSNSSSUX SN x XN\
AN AN N NA N NN NR R

We list the overview of existing object detectors about their capability in Tab. 7. In the 2D detection
area, significant advancements have been achieved across various approaches, including traditional
closed-world detectors, open-vocabulary detectors constrained by category confusion issues, and
open-world detectors utilizing class-agnostic classification. However, in the 3D domain, progress
remains substantially lagging behind the rapid developments observed in 2D detection. The majority
of 3D detectors are designed to operate in either indoor or outdoor point clouds, lacking the ability
to generalize across different environments. In terms of modality, most 3D detectors are limited
to utilizing only one type of data, either point clouds or RGB images, and are constrained to the
closed-world setting. While recent advancements have introduced open-vocabulary 3D detection
methods, class-agnostic open-world 3D detectors overcoming the category confusion problem have
still yet to emerge.

In comparison, our OP3Det, as the first class-agnostic open-world 3D detector, can not only recognize
both base and novel classes during inference but also effectively mitigate the issue of category
confusion. Furthermore, it leverages data from multiple modalities for multimodal training and is
capable of functioning seamlessly in both indoor and outdoor scenes. Additionally, our method can
be easily extended to 2D detection tasks, demonstrating its versatility and robustness. Therefore, it
greatly advances existing research towards the goal of universal 3D object detection and we believe
OP3Det can become a significant step towards the future of 3D foundation models.

B More Method Details

We summarize our method in Algorithm 1 and 2. Specifically, OP3Det utilizes both point clouds
and RGB images for multi-modal training to detect in the 3D open world. To recognize novel classes
in the open world and achieve the cross-category ability, the core idea of our method is to leverage
abundant 2D semantic knowledge to enhance 3D open-world detection. Specifically, we utilize 3D
spatial proximities to refine the uniformly distributed point prompts provided to SAM. Instead of
uniformly sampling a 64x64 grid, we assign a point-wise object prior to each point by combining its
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Algorithm 1 - 3D object discovery algorithm

Input:
1. (Xp, X7): point clouds and corresponding 3D detection images, with camera parameters K, R;
2. 3D annotations {(c;, bb3P)}M ., ¢; = {0, 1} due to the class-agnostic setting.
2. The pre-trained foundation model SAM ®g 4/, a pre-trained 2D class-agnostic detector @ 4
3. Point number threshold Np;,,¢ and multi-scale threshold {d;,i =1,2,--- , N5}
3D Object Discovery:
1. Multi-scale point sampling:
for / = 1to N5 do
Initialize selected set Sy «— (), extract object prior map Oprior
while |.S;| < Npoint do
Select point s* with the highest value in Opyior, add s* to Sy
forallp; € X, \ S, do
Compute 3D distance d(s*, p;)
if d(s*,pi) < d; then
Set object prior Opyior at corresponding 2D pixel to 0
end if
end for
end while
end for
The ultimate selected set S = NMS(U?/:‘S1 Se)
2. Apply ®sanr and & 4 for selected points, then utilizing K, R; to project into the 3D space:

{bb;} = (KRy)™" - ®ca(®san(S)) .

Algorithm 2 - Cross-Modal MoE algorithm

Cross-Modal MoE Training:

1. Obtain point cloud features F')p from X p, image features in the voxel space F} from X;.

2. Obtain multi-modal features Fy; = [Fp, Fy].

3. Utilize self-attention module on the features:

Fp = SelfAttn(Fp), and Fr, F is obtained in the same way.
4. Utilize the multi-modal router R to obtain the routing probability: (pp, pr,pm) = R(Fum).
5. Apply the cross-modal MoE for multi-modal fusion: F = Y. p; - &(F;).
ie(P,I,M)

6. Utilize F for 3D bounding box prediction, supervised with {bAbZ-} + {bb;} for the model

training.

IoU scores with the maximum attention value across self-attention heads from the self-supervised
model (DINO). These object prior points are then progressively refined using a coarse-to-fine multi-
scale sampling strategy, which allows for increasingly precise localization across spatial resolutions.
Specifically, we project all 3D points onto the 2D image plane and establish a mapping between 2D
pixels and 3D points by associating each pixel with its nearest 3D point. In each iteration, the point
with the highest object prior value is selected as the source point. For each selected source point,
we compute its 3D distance to all other points. Points within a predefined 3D distance threshold are
suppressed by setting their 2D object prior values to zero. We then select the next source point with
the highest remaining object prior to the score and repeat this process until N points are selected. The
2D bounding boxes generated from the refined points are then used in 2D class-agnostic models for
3D object discovery.

Ultimately, during training, the cross-modal MoE is utilized for multi-modal fusion and the discovered
3D objects serve as supervision.

C More Experimental Results

We further conduct more experiments in this section to demonstrate the effectiveness of our designs.
We first list the AP metric of OP3Det on the SUN RGB-D dataset in Tab. 8, then conduct ablation study
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Method

APnovcl

SUN RGB-D

APy

APbase

closed-world 3D object detection methods

VoteNet [16] 2.0 55.1 66.3
GroupFree [60] 2.3 49.2 58.4
FCAF3D [17] 34 61.0 74.1
Uni3DETR [15] 2.3 61.3 74.4
Tr3D [56] 37 53.4 62.7
open-vocabulary 3D object detection methods
CoDA [7] 9.1 48.2 57.8
OV-Uni3DETR [9] 10.2 57.4 67.8
ImOV3D [61] 8.1 28.3 354

class-agnostic open-world 3D object detection method

OP3Det (ours)

12.6

65.4

75.7

Table 8: AP metric of the cross-category performance of OP3Det on the SUN RGB-D dataset.

Table 9: Ablation Study on the SUN RGB-D dataset about the multi-scale point sampling. We
conduct 3D object discovery using the corresponding methods, and directly evaluate the AR and AP
metrics of discovered 3D objects, without training the detector. PS is short for point sampling.

method AR ovel ARuii ARpgse AP

SAM [27] 64.0 554 52.8 6.8

SAM + PS (7=0.2) 47.5 43.1 41.7 5.9

SAM + PS (7=2) 499 12.6 40.3 5.7

SAM + multi-scale PS 61.9 54.2 51.9 7.6

SAM + multi-scale PS + LDET [55] 66.1 59.2 57.1 10.0

mainly on the multi-scale point sampling strategy during 3D object discovery and the cross-modal
MoE.

AP metric. In the original paper, we mainly report the AR metric of our OP3Det, consisting of AR,
AR, oper and ARpqsc. We only report AP,;; in the original paper. The main reason is that we aim to
discover “all" 3D objects in the scene, while not all bounding boxes are necessarily annotated in the
ground truth of the test set. As a result, objects that are not in the test set annotation but found by
the model will also be counted as false positives (FP) and introduce errors in AP metrics. Besides,
calculating AP,,5yc; and APy, is also not suitable for class-agnostic detection, because the definition
of FP can be ambiguous. For example, when calculating AP,, ., it is unclear whether the detected
base objects should be FP. Therefore, the AR metric is more suitable for our setting.

Despite this, we can still ignore base or novel objects when calculating AP,,,y,¢; Or APpqse, to provide
a comprehensive comparison. We list the results in Tab. 8. As can be seen, our OP3Det also obtains a
better performance, achieving the 12.6% AP,,,,¢; and 65.4% AP. Compared with existing methods,
we achieve 2.4% higher AP,,,,.; and 4.1% higher AP. This further demonstrates the effectiveness of
our method.

Multi-scale point sampling. In our original paper, for 3D object discovery, we first extract class-
agnostic masks using SAM. During this process, the multi-scale point sampling strategy is employed
to alleviate fragmented masks or object parts. Finally, LDET is applied for post-processing. We
analyze the impact of these design choices sequentially, and evaluate the AR and AP metrics of
discovered 3D objects, as shown in Tab. 9.

As observed, the direct results from SAM achieve relatively strong AR metrics for 3D discovered
objects, with an AR,,,,e; of 64% and an AR,;; of 55.1%. This demonstrates that SAM effectively
uncovers a broader range of objects. With these objects participating in the training, the diversity
of training can be boosted greatly. This validates the effectiveness of our idea to introduce broader
2D semantic knowledge into the 3D domain. However, the presence of numerous fragmented masks
introduces a significant amount of noisy masks, leading to a very low AP of only 6.8%. This low
precision indicates that directly using these objects during training would result in poor model
performance, as can be seen in our original paper.
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Table 10: Comparison with 2D open-world methods for the COCO (VOC) to COCO (non-VOC)
setting. Here, we compare with various 2D open-world instance segmentation methods and report
metrics based on masks.

Method AP ARlOO Fl
Mask R-CNN [87] | 1.0 8.2 1.8
SAM [27] 3.6 48.1 6.7
OLN [88] 4.2 28.4 7.3
LDET [55] 4.3 24.8 13
GGN [89] 4.9 28.3 8.4
SWORD [90] 4.8 30.2 8.3
UDOS [91] 29 343 53
SOS [92] 8.9 393 145
OP3Det (ours) 139 429 21.0

SAM3D

OP3Det
(Ours)

Figure 5: Qualitative comparison with SAM3D [46]. Benefiting from our contributions, our method
OP3Det yields more accurate localization and precise discovery of novel objects.

Using point sampling effectively filters out many fragmented masks, reducing noise in object masks.
However, this also inadvertently filters some useful objects. Consequently, regardless of the choice of
7, both AR and AP metrics show a decline, negatively impacting the performance. By leveraging
multi-scale point sampling that combines the strengths of different 7 values, it becomes possible to
balance noise reduction while retaining diverse objects. This results in an improved AP of 7.6%,
demonstrating a notable enhancement in the quality of discovered 3D objects. However, the AR
metric still remains lower than when directly using SAM, indicating that some important masks are
still being filtered out. By further incorporating LDET, the holistic object understanding ability of the
2D detector can be utilized to better filter out noise within object masks. As a result, both AR and AP
metrics show significant improvement. This enhancement demonstrates that the quality of discovered
3D objects is notably elevated, enabling their effective use in subsequent training and ensuring the
model’s cross-category generalization ability.

Comparison with 2D methods. Additionally, since a part of our method is conducted in the 2D
domain, we also compare it with 2D open-world detectors. Specifically, we first perform 2D object
discovery and then train Mask R-CNN [87] on the COCO [31] dataset, for instance, segmentation.
The 20 classes overlapping with VOC [93] are treated as seen classes, while the remaining 60 classes
are treated as novel ones. We compare the predicted masks against existing methods with the results
presented in Tab. 10. For a fair comparison, we do not utilize the text prompts here, as utilizing the
class-specific 2D detector may result in the category leakage problem. As can be seen, OP3Det also
surpasses existing methods by 5% in AP and 3.6% in AR. This demonstrates the effectiveness of our
designed multi-scale point prompts in 2D object discovery.
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Figure 6: More visualized results of OP3Det on the SUN RGB-D (the first three rows) and ScanNet
(the last row) dataset. The red boxes are base classes and blue boxes are novel classes.

Comparison with SAM-related methods. Recent approaches such as SAM3D [46] leverage SAM-
generated masks from RGB images and project them into 3D to obtain class-agnostic instance
segmentation. To improve mask consistency, SAM3D adopts a bidirectional merging strategy across
adjacent frames. However, it does not perform object detection. The instance segmentation task
requires more fine-grained mask annotations for training; thus utilizing geometric information can
be easier in such a setting. In comparison, the class-agnostic object detection task has still not been
explored yet. Meanwhile, existing SAM-related methods usually rely heavily on temporal fusion
for filtering low-quality objects and achieving better localization quality, which cannot be applied
in our object detection setting, where only one frame is available for a 3D scene. To ensure a fair
comparison under favorable conditions for SAM3D, we re-implement its pipeline and extract 3D
bounding boxes around the resulting point cloud masks. As shown in Figure 5, our method OP3Det
outperforms SAM3D significantly in both the number and localization quality of novel objects. This
demonstrates that OP3Det is not only more effective in discovering novel instances, but also robust
under minimal inputs—achieving superior results without requiring multi-frame fusion.

D More Visualized Results

We provide more visualized results on the SUN RGB-D and ScanNet datasets in Fig. 6. From these
examples, it is evident that our model effectively detects abundant base class objects, such as chairs
and tables, while also accurately identifying numerous rare novel classes, such as various small
objects on tables or beds. These visualizations further validate the effectiveness of our approach.
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Figure 7: Failure Case. Despite accurately detecting most objects using both 2D semantic and 3D
geometry knowledge, OP3Det fails on non-rigid and low-contrast regions such as the white curtains.

Limitation. All methods have the potential for errors, and here we discuss the potential failure cases
in our results. As observed in the visualization results, OP3Det successfully detects most objects,
regardless of their size or whether their category can be clearly identified. However, some objects
remain undetected, particularly in complex scenes, such as paper items on a cluttered desk or stickers
on a wall. This is partially because the training data and annotations do not cover a sufficiently diverse
range of scenarios. Additionally, in highly complex environments, missed detections may occur when
objects have rigidity and color similar to the background, making them difficult to distinguish.

Failure Case Analysis. As shown in the figure7, our model successfully detects most objects in this
complex scene. The two closely black monitors on the desk are correctly localized, benefiting from
the use of 3D geometric information. However, our method still fails to detect some objects such as
the white curtain and the white sofa. We attribute these failures to the lack of distinctive geometric or
color features in these objects. Since both curtains and sofas have relatively flat geometry and low
texture contrast, especially under overexposed lighting conditions, it becomes difficult for the model
to distinguish them from the background or surrounding surfaces. This suggests the need for better
handling of low-texture, non-rigid and color-homogeneous regions in open-world 3D detection.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly describe the proposed class-agnostic
open-world 3D object detection setting, the OP3Det model with multi-scale point sampling
and cross-modal MoE, and these claims are supported by experiments demonstrating strong
open-world generalization.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The supplementary material acknowledges that although OP3Det performs
well on both common and uncommon objects, it may still miss certain objects in complex
scenes due to limited point cloud coverage and the reliance on accurate 2D-3D projection.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present formal theoretical results. Instead, it focuses on the
design and empirical evaluation of the proposed framework.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes all necessary details to reproduce the main experimental
results, including dataset configurations, model architecture, training settings, and evaluation
metrics. The code will be made publicly available after publication.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: While the code and data will be released after publication, the paper and
supplementary material provide detailed descriptions of the datasets, model architecture,
training procedure, and evaluation protocols, which are sufficient to reproduce the main
results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all necessary training and evaluation details, including
dataset splits and manually defined hyper-parameters. The selection of these parameters is
documented in the main text and supplementary material to ensure clarity and reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Although error bars or standard deviations are not explicitly reported, all results
are obtained by averaging multiple runs to ensure stability. The consistent improvements
over baselines across benchmarks indicate the robustness of the findings.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

 The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details on the GPU type (e.g., NVIDIA A100), batch size, and
number of training epochs. We will include estimated training time and compute usage per
experiment in the supplementary material to support reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research complies fully with the NeurIPS Code of Ethics. It does not in-
volve human subjects, personal data, or sensitive content, and all experiments are conducted
with academic integrity and transparency.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work advances class-agnostic 3D object detection, which could positively
impact robotics and autonomous systems by improving their ability to detect unseen objects.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of models or datasets that pose a high
risk of misuse. No scraped data, generative models, or sensitive content are used or released.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: The paper makes use of several existing assets, including open-source toolkits
(e.g., MMDetection3D) and public datasets (e.g., SUN RGB-D, ScanNet, KITTI). All assets
are properly cited in the main paper. We have ensured that all data and code dependencies
are used in accordance with their terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces OP3Det, and the implementation code will be released
soon. The release will include documentation covering installation, training, evaluation, and
usage instructions to facilitate reproducibility. No personal or sensitive data is involved.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any experiments with human subjects or crowd-
sourcing. All data used are from publicly available datasets.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve any human subjects or crowdsourcing experiments,
and thus no IRB or equivalent approval is required.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used as part of the core methods or experiments in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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